

Advanced Mirror Technology Development

Revolutionary concepts for rapid, cost-effective large aperture mirror technology

Christopher H. M. Jenkins

Compliant Structures Laboratory

www.compliantlab.sdsmt.edu

Mechanical Engineering Department

S. D. School of Mines and Technology, Rapid City, SD 57702

christopher.jenkins@.sdsmt.edu

Introduction

The mission of the AFRL/VS Advanced Mirror Systems program is the development and demonstration of mirror technologies critical to the cost-effective development of large aperture space-based optical systems during the next 10-20 years.

Introduction

- The Compliant
 Structures Lab at
 SDSM&T has worked for several years with
 AFRL/DE and VS on membrane mirror technologies.
- Now the AFRL/VS and CSL have begun a fundamental program to advance mirror fabrication technology.

Introduction

- Advanced Mirror Technology
 Development (AMTD) program
 is to advance revolutionary
 concepts for rapid, costeffective large aperture mirror
 technology. Two broad classes
 of technology development are
 being explored:
 - Precision gossamer apertures
 - Laser-assisted rapid mirror fabrication

Precision Gossamer Apertures

- Large, ultralightweight, deployable space-based reflectors are of current interest to DOD, NASA, and others.
- The most promising candidates are membrane or *gossamer* structures
- We are pursuing active deployment and shape control for these generation after next surveillance systems

Precision Gossamer Apertures

- For deployment and shape control, active elements can be located at the boundaries of the aperture or distributed over its surface.
- We have shown elsewhere that boundary control can be an effective strategy to improve figure accuracy.
- The current research investigates incorporating surface distributed active elements like shape memory alloys and piezoelectric polymers.

Generic Active Seam

passing through the conduit

Cross-section of an active seam joining 2 gores

A Notional Concept

Laser-Assisted Rapid Mirror Fabrication 🛭

- It is estimated that the Space-Based Laser program alone will require over 200 m² per year of mirrors.
- Current world mirror fabrication capacity is about 50 m² per year!
- We are pursuing use of our Intelligent Laser
 Processing to make significant contributions to mirror fabrication needs.

Kodak 1.4m AMSD Mirror, 57nm RMS Figure

Laser-Assisted Rapid Mirror Fabrication

- Two approaches are under investigation:
 - One is the Laser
 Powder Deposition
 (LPD) of light, stiff,
 backing structures onto
 thin optical facesheets,
 such as nanolaminates.
 - The other is the LPD of glass directly onto lightweight, stiff backing structures.

Laser-Assisted Rapid Mirror Fabrication

Two LPD technologies are under assessment.

One uses our 3kW Nd:YAG laser mounted on a 6-axis Fanuc robot. Twin powder feeders supply deposition materials to the laser

head via flow nozzles.

Compliant Structures Laboratory www.compliantlab.sdsmt.edu

Laser-Assisted Rapid Mirror Fabrication

• The other is Maskless Mesoscale Materials Deposition (M³D) technology (Optomec, Inc.), which uses an ink-jet process to deposit chemical precursor solutions and colloidal suspensions that are then

laser fused.

Acknowledgment

We wish to thank Dr. Jeffry Welsh and the Air Force Research Laboratory (VS) for their support of this work.